Misplaced Pages

Talk:Speed of light: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 20:45, 8 June 2004 editWile E. Heresiarch (talk | contribs)Extended confirmed users6,722 edits follow up about scientific notation← Previous edit Latest revision as of 08:22, 12 January 2025 edit undoRemsense (talk | contribs)Extended confirmed users, Page movers, New page reviewers, Template editors63,000 edits Reverting edit(s) by 108.190.148.96 (talk) to rev. 1256166987 by DVdm: Non-constructive edit (UV 0.1.6)Tags: Ultraviolet Undo 
Line 1: Line 1:
{{skip to talk}}
The following needs to be reworked to make it fit in the context of an encyclopedia article. As it is it is a bit too chatty.
{{talk header|noarchive=yes}}
{{Article history
|action1=FAC
|action1date=20:53, 17 Aug 2004
|action1link=Misplaced Pages:Featured article candidates/Speed of light/archive1
|action1result=promoted
|action1oldid=5315343


|action2=FAR
:=== How Fast is the Speed of light ===
|action2date=23:46, 7 December 2008
|action2link=Misplaced Pages:Featured article review/Speed of light/archive1
|action2result=removed
|action2oldid=256337011


|action3=PR
:I like to use the vacation analogy to give people a feel for how fast the speed of light is. It goes like this. Let’s say I wanted to take a vacation on the moon. Fortunately there is a highway called Pretend that connects the earth to the moon. The speed limit on highway Pretend is 100 mph and I can only drive 10 hours a day. I had better pack a big trailer with plenty of food and pull it behind my SUV because under these conditions it is going to take me about 250 day to get from the earth to the moon. Light can travel the same distance in one and one forth seconds or about 5 beats of the drum at one-quarter time.
|action3date=10:00, 21 November 2009 (UTC)
|action3link=Misplaced Pages:Peer review/Speed of light/archive1
|action3result=Reviewed
|action3oldid=326969975


|action4=FAC
-----
|action4date=21:05, 25 January 2010
|action4link=Misplaced Pages:Featured article candidates/Speed of light/archive2
|action4result=not promoted
|action4oldid=339898368


|action5=PR
As a layman, I don't understand how it's possible for something to travel faster than c but not carry information faster than c. Could someone explain this? -- ]
|action5date=18:42, 12 October 2010
:A very rough explanation is that the "something' that travel faster than light doesn't carry energy. -- ] 00:43 Apr 19, 2003 (UTC)
|action5link=Misplaced Pages:Peer review/Speed of light/archive2
:Also, it is only in a vacuum than nothing (no information) can travel faster than light; in a medium thing can travel faster than light (see ]) -- ] 00:49 Apr 19, 2003 (UTC)
|action5result=reviewed
|action5oldid=390277913


|action6=FAC
----
|action6date=04:35, 20 December 2010
|action6link=Misplaced Pages:Featured article candidates/Speed of light/archive3
|action6result=promoted
|action6oldid=403246761


|action7 = FAR
"It is a solution to the ]"
|action7date = 2022-03-19
|action7link = Misplaced Pages:Featured article review/Speed of light/archive2
|action7result = kept
|action7oldid = 1077590852


|currentstatus=FA
:How is the speed of light be a solution to a vector equation? ] 08:08, 13 Nov 2003 (UTC)
|maindate=October 29, 2004
::As my electromagnetics professor explained it (and you'll have to bear with me - it's been almost 2 years), it's not that the speed is the solution, per se. It just doesn't have a solution for any other speed besides C. --] 08:28, 13 Nov 2003 (UTC)
|maindate2=16 August 2022
:::One more thing. Here is the exact derivation you are looking for: http://people.ccmr.cornell.edu/~muchomas/P214/Notes/OtherWaves/node18.html --] 08:36, 13 Nov 2003 (UTC)
}}
{{WikiProject banner shell|collapsed=yes|class=FA|vital=yes|1=
{{WikiProject Physics|importance=Top |relativity=yes }}
}}
{{Spoken article requested|] (])ScientistBuilder] (]) 17:18, 29 January 2022 (UTC)|The speed of light is central to physics fields including the Big Bang Theory, special relativity, general relativity, spectroscopy, optics, as well as real world applications such as signal processing and GPS networks}}
{{User:MiszaBot/config
|archiveheader = {{aan}}
|maxarchivesize = 250K
|counter = 18
|minthreadsleft = 4
|algo = old(90d)
|archive = Talk:Speed of light/Archive %(counter)d
}}
{{archive box |search=yes |bot=MiszaBot I |age=3 |units=months |index=/Archive index|
* ] (Up to end of 2004)
* ] (2005 – July 2006)
* ] (July 2006 – end of 2006)
* ] (2007)
* ] (2008)
* ] (Jan 2009 – Feb 2009)
* ] (Feb 2009 — July 2009)
* ] (July–Aug 2009)
* ] (August 2009)
* ] (Aug–Sept 2009)
* ] (Sept–Oct 2009)
* ] (Oct–Dec 2009)
* ] (Nov 2009 – May 2010)
* ] (May–Aug 2010)
* ] (Aug–Dec 2010)
* ] (Feb 2011 – Apr 2014)
* ] (Jan 2014 – )
}}
{{DEFAULTSORT:Speed of light}}
{{User:HBC Archive Indexerbot/OptIn
|target=/Archive index |mask=/Archive <#> |leading_zeros=0 |indexhere=yes
}}


== Is this part accurate in History? ==


Quote:
If I understood correctly. <- This sentence was written by me. ] 21:30, 16 Nov 2003 (UTC) The rest wasn't. -> Faster than light transmission of information follows some uncertainty principals, it also sidesteps a couple rules. When information is transmitted at such speeds, it can never be proven that the light recieved is the light that was transmitted. Photons subjected to this process have their frequency changed, their overall energy content is different due to the processes that caused this feat. However, if those people in line were to shout in sequence, the information would have to be previously known, this caused it's own speculation. As with the noted experiment of 300c, the photons arrived faster than light accounts for, the arrival of the photons is information, it arrived at it's destination faster than C, there IS NO explanation. - GouRou


'''Connections with electromagnetism'''
----


In the 19th century ''Hippolyte Fizeau'' developed a method to determine the speed of light based on time-of-flight measurements on Earth and reported a value of 315000 km/s (''704,634,932 m/h'').
Wile, why are you removing the scientific notation approximation? In 99% of cases when I'm performing a calculation involving the speed of light, the number I'm looking for is 3 &times; 10<sup>8</sup>. I'm pretty sure this approximation, in this format, is useful to other people as well. ] ] 18:49, 8 Jun 2004 (UTC)

:Well, it is cluttering, as it doesn't serve any obvious purpose. Anyone who is actually making use of ''c'' in computations is surely capable of approximating it as 3 times 10^8 or 0.2998 times 10^9 or whatever they please. The vast majority of the remainder of the readers will be much more at home with "thousands of somethings" instead of scientific notation. -- I feel pretty strongly that the introductory sentences of an article must get right straight to the point. Naturally it is quite possible that the introduction still isn't getting there, so let's work in that direction. Regards, ] 20:45, 8 Jun 2004 (UTC)
His method was improved upon by ''Léon Foucault'' who obtained a value of 298000 km/s (''666,607,015 m/h'') in 1862. ] (]) 01:06, 18 November 2023 (UTC)

:Are you suggesting our article may not be correct or proposing that it include conversions to km/h at that point, and in either case, why? ] (]) 11:07, 18 November 2023 (UTC)

::There's a definite discrepancy in number of significant digits between the quoted metric and traditional measurements... ] (]) 13:10, 18 November 2023 (UTC)
:::Indeed, but the values in parentheses aren't in the article. If we wanted to include them, we could use {{tl|Convert}}, which would probably round them appropriately automatically, and wouldn't abbreviate miles to "m" either, but I don't see why we'd want to include such conversions in that part of the article anyway. ] (]) 13:46, 18 November 2023 (UTC)
::::I added the parenthesis. It's just a conversion to m/h that I made, just to show how different they are & to convert it into U.S. terms. ] (]) 00:15, 24 December 2023 (UTC)
::I'm not sure if 315000 or 298000 km/s is correct. I feel it's 315000 km/s, but I'm not sure. ] (]) 18:04, 25 November 2023 (UTC)

== Why not also include an accurate description of c in miles per second? ==

186282.3970512 mi/s, to be fairly accurate.

== Speed of light in vacuum ==

Misplaced Pages should get rid of all occurrences of the phrase "speed of light in vacuum". There is only one speed of light, which is a universal constant. Also the speed of light doesn't change if not in vacuum. ] represents the real speed of a photon, and that doesn't change. Only ] is changing, causing the optical effects that mislead people. But this very article is explaining the same in the section ]. ] (]) 13:24, 20 May 2024 (UTC)

:If you have a reference for your point of view please share it. ] (]) 15:15, 20 May 2024 (UTC)
::@] shouldn't this work the other way around? I don't want to add anything. I want something to be removed which has no reference. ] (]) 15:52, 20 May 2024 (UTC)
:::The article has rather a lot of mentions of the speed of light in vacuum that are supported by references to ]. Merely in ], we have {{tqb|Sometimes {{Math|''c''}} is used for the speed of waves in any material medium, and {{Math|''c''}}<sub>0</sub> for the speed of light in vacuum.<ref name=handbook>See, for example:
* {{Cite book
|last=Lide |first=D. R.
|year=2004
|title=CRC Handbook of Chemistry and Physics
|url=https://books.google.com/books?id=WDll8hA006AC&q=speed+of+light+%22c0+OR+%22&pg=PT76
|pages=2–9
|publisher=]
|isbn=978-0-8493-0485-9
}}
* {{Cite book
|last=Harris |first=J. W. |year=2002
|title=Handbook of Physics
|url=https://books.google.com/books?id=c60mCxGRMR8C&q=speed+of+light+%22c0+OR+%22+date:2000-2009&pg=PA499
|page=499
|publisher=Springer
|isbn=978-0-387-95269-7
|display-authors=etal}}
* {{Cite book
|last=Whitaker |first=J. C.
|year=2005
|title=The Electronics Handbook
|url=https://books.google.com/books?id=FdSQSAC3_EwC&q=speed+of+light+c0+handbook&pg=PA235
|page=235
|publisher=CRC Press
|isbn=978-0-8493-1889-4
}}
* {{Cite book
|last=Cohen |first=E. R. |year=2007
|title=Quantities, Units and Symbols in Physical Chemistry
|url=https://books.google.com/books?id=TElmhULQoeIC&q=speed+of+light+c0+handbook&pg=PA143
|page=184
|edition=3rd
|publisher=]
|isbn=978-0-85404-433-7
|display-authors=etal}}</ref> This subscripted notation, which is endorsed in official SI literature<ref name=BIPM_SI_units>{{SIbrochure8th|page=112}}</ref> ....}} I find the idea that we would deny the current definition of the metre rather disturbing. ] (]) 16:20, 20 May 2024 (UTC)
::::This is what I was talking about from the beginning. You are confusing two different concepts as well. ''c''<sub>0</sub> has a place in physics. In one place. Optics. In case of refraction the phase velocity is used for calculations, because the phase of light is shifting constantly if travelling in a medium which is not vacuum. Every other area of physics is using the universal constant ''c'', which can be calculated using ]. By the way the ] article also says "Photons are massless particles that always move at the speed of light when in vacuum." which is plain wrong. Photons are unable to travel slower then ''c''.
::::If you think that Misplaced Pages is correct in its current state, than I won't say anything more. ] (]) 16:58, 20 May 2024 (UTC)
:::::I fixed the ] article thanks. ] (]) 20:20, 20 May 2024 (UTC)
:::@] You asked that all occurences across Misplaced Pages to be changed. I think we better discuss a reference for your claim first. You pointed to one section, ], but it has sources so you need to explain why they should be removed. ] (]) 16:58, 20 May 2024 (UTC)
::::Understanding should be the key here. Please look at this . After watching it you will have the urge searching for references, too. ] (]) 17:10, 20 May 2024 (UTC)
:::::That's a great video. But it's not news, sorry. It explains the atomic model of the index of refraction. Based on this video I recommend no changes. ] (]) 17:58, 20 May 2024 (UTC)

* In the literature:
::{| class="wikitable" style="text-align: center"
|-
! Google Search !! Scholar !! Books
|-
| "Speed of light in vacuum"
|
|
|-
|}
: Getting rid of the term would be spectacularly against Misplaced Pages's mission. - ] (]) 19:41, 20 May 2024 (UTC)

{{reflist-talk}}

:If the speed of light is always the same, then ] shouldn't exist. ] (]) 09:24, 21 May 2024 (UTC)

:The existence of Cherenkov radiation is already mentioned at the end of {{section link|Speed of light#In a medium}}. <span style="box-shadow:2px 2px 6px #999">]]</span> 10:16, 21 May 2024 (UTC)

== Speed of light in literature ==

I think there needs to be a section about speed of light in popular culture somewhere, namely the teleportation gimmick used areas like in Star Wars and Kingdom Hearts. The disambiguation mentions a few examples but not this article. ] (]) 00:00, 15 October 2024 (UTC)

:We already have a page on ] and one on ] and on ]. ] (]) 01:32, 15 October 2024 (UTC)

:A fairly well-known old science-fiction story where the speed of light plays a prominent role is "]" by Philip Latham. The speed of light actually remains the same, but other things change, resulting in the doom of the universe... ] (]) 07:41, 15 October 2024 (UTC)

Latest revision as of 08:22, 12 January 2025

Skip to table of contents
This is the talk page for discussing improvements to the Speed of light article.
This is not a forum for general discussion of the article's subject.
Article policies
Find sources: Google (books · news · scholar · free images · WP refs· FENS · JSTOR · TWL
Featured articleSpeed of light is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Misplaced Pages community. Even so, if you can update or improve it, please do so.
Main Page trophyThis article appeared on Misplaced Pages's Main Page as Today's featured article on October 29, 2004, and on August 16, 2022.
Article milestones
DateProcessResult
August 17, 2004Featured article candidatePromoted
December 7, 2008Featured article reviewDemoted
November 21, 2009Peer reviewReviewed
January 25, 2010Featured article candidateNot promoted
October 12, 2010Peer reviewReviewed
December 20, 2010Featured article candidatePromoted
March 19, 2022Featured article reviewKept
Current status: Featured article
This  level-3 vital article is rated FA-class on Misplaced Pages's content assessment scale.
It is of interest to multiple WikiProjects.
WikiProject iconPhysics: Relativity Top‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Misplaced Pages. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.PhysicsWikipedia:WikiProject PhysicsTemplate:WikiProject Physicsphysics
TopThis article has been rated as Top-importance on the project's importance scale.
This article is supported by the relativity task force.
WikiProject Spoken Misplaced Pages

There is a request, submitted by ScientistBuilder (talk)ScientistBuilderScientistBuilder (talk) 17:18, 29 January 2022 (UTC), for an audio version of this article to be created. For further information, see WikiProject Spoken Misplaced Pages.

The rationale behind the request is: "The speed of light is central to physics fields including the Big Bang Theory, special relativity, general relativity, spectroscopy, optics, as well as real world applications such as signal processing and GPS networks".

Archiving icon
Archives


This page has archives. Sections older than 90 days may be automatically archived by Lowercase sigmabot III when more than 4 sections are present.


Is this part accurate in History?

Quote:

Connections with electromagnetism

In the 19th century Hippolyte Fizeau developed a method to determine the speed of light based on time-of-flight measurements on Earth and reported a value of 315000 km/s (704,634,932 m/h).

His method was improved upon by Léon Foucault who obtained a value of 298000 km/s (666,607,015 m/h) in 1862. Kailandosk (talk) 01:06, 18 November 2023 (UTC)

Are you suggesting our article may not be correct or proposing that it include conversions to km/h at that point, and in either case, why? NebY (talk) 11:07, 18 November 2023 (UTC)
There's a definite discrepancy in number of significant digits between the quoted metric and traditional measurements... AnonMoos (talk) 13:10, 18 November 2023 (UTC)
Indeed, but the values in parentheses aren't in the article. If we wanted to include them, we could use {{Convert}}, which would probably round them appropriately automatically, and wouldn't abbreviate miles to "m" either, but I don't see why we'd want to include such conversions in that part of the article anyway. NebY (talk) 13:46, 18 November 2023 (UTC)
I added the parenthesis. It's just a conversion to m/h that I made, just to show how different they are & to convert it into U.S. terms. Kailandosk (talk) 00:15, 24 December 2023 (UTC)
I'm not sure if 315000 or 298000 km/s is correct. I feel it's 315000 km/s, but I'm not sure. Kailandosk (talk) 18:04, 25 November 2023 (UTC)

Why not also include an accurate description of c in miles per second?

186282.3970512 mi/s, to be fairly accurate.

Speed of light in vacuum

Misplaced Pages should get rid of all occurrences of the phrase "speed of light in vacuum". There is only one speed of light, which is a universal constant. Also the speed of light doesn't change if not in vacuum. Group velocity represents the real speed of a photon, and that doesn't change. Only phase velocity is changing, causing the optical effects that mislead people. But this very article is explaining the same in the section Speed of light#In a medium. Lustakutya (talk) 13:24, 20 May 2024 (UTC)

If you have a reference for your point of view please share it. Johnjbarton (talk) 15:15, 20 May 2024 (UTC)
@Johnjbarton shouldn't this work the other way around? I don't want to add anything. I want something to be removed which has no reference. Lustakutya (talk) 15:52, 20 May 2024 (UTC)
The article has rather a lot of mentions of the speed of light in vacuum that are supported by references to reliable sources. Merely in Speed of light#Numerical value, notation, and units, we have

Sometimes c is used for the speed of waves in any material medium, and c0 for the speed of light in vacuum. This subscripted notation, which is endorsed in official SI literature ....

I find the idea that we would deny the current definition of the metre rather disturbing. NebY (talk) 16:20, 20 May 2024 (UTC)
This is what I was talking about from the beginning. You are confusing two different concepts as well. c0 has a place in physics. In one place. Optics. In case of refraction the phase velocity is used for calculations, because the phase of light is shifting constantly if travelling in a medium which is not vacuum. Every other area of physics is using the universal constant c, which can be calculated using Maxwell's equations. By the way the Photon article also says "Photons are massless particles that always move at the speed of light when in vacuum." which is plain wrong. Photons are unable to travel slower then c.
If you think that Misplaced Pages is correct in its current state, than I won't say anything more. Lustakutya (talk) 16:58, 20 May 2024 (UTC)
I fixed the Photon article thanks. Johnjbarton (talk) 20:20, 20 May 2024 (UTC)
@Lustakutya You asked that all occurences across Misplaced Pages to be changed. I think we better discuss a reference for your claim first. You pointed to one section, Speed of light#In a medium, but it has sources so you need to explain why they should be removed. Johnjbarton (talk) 16:58, 20 May 2024 (UTC)
Understanding should be the key here. Please look at this video. After watching it you will have the urge searching for references, too. Lustakutya (talk) 17:10, 20 May 2024 (UTC)
That's a great video. But it's not news, sorry. It explains the atomic model of the index of refraction. Based on this video I recommend no changes. Johnjbarton (talk) 17:58, 20 May 2024 (UTC)
  • In the literature:
Google Search Scholar Books
"Speed of light in vacuum" 67,400 68,200
Getting rid of the term would be spectacularly against Misplaced Pages's mission. - DVdm (talk) 19:41, 20 May 2024 (UTC)

References

  1. See, for example:
  2. International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 112, ISBN 92-822-2213-6, archived (PDF) from the original on 2021-06-04, retrieved 2021-12-16
If the speed of light is always the same, then Cherenkov radiation shouldn't exist. AnonMoos (talk) 09:24, 21 May 2024 (UTC)
The existence of Cherenkov radiation is already mentioned at the end of Speed of light § In a medium.  Dr Greg  talk  10:16, 21 May 2024 (UTC)

Speed of light in literature

I think there needs to be a section about speed of light in popular culture somewhere, namely the teleportation gimmick used areas like in Star Wars and Kingdom Hearts. The disambiguation mentions a few examples but not this article. Jordf32123 (talk) 00:00, 15 October 2024 (UTC)

We already have a page on Teleportation and one on Teleportation in fiction and on warp drive. Johnjbarton (talk) 01:32, 15 October 2024 (UTC)
A fairly well-known old science-fiction story where the speed of light plays a prominent role is "The Xi Effect" by Philip Latham. The speed of light actually remains the same, but other things change, resulting in the doom of the universe... AnonMoos (talk) 07:41, 15 October 2024 (UTC)
Categories:
Talk:Speed of light: Difference between revisions Add topic