Misplaced Pages

Hermitian matrix: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 23:46, 30 July 2022 editTheoreticallyAPhysicist (talk | contribs)9 editsm Applications: explained why hermitian matrices are important in quantum mechanics← Previous edit Latest revision as of 00:55, 10 November 2024 edit undoGamapamani (talk | contribs)Extended confirmed users12,123 editsm - extra tag 
(39 intermediate revisions by 27 users not shown)
Line 1: Line 1:
{{Short description|Matrix equal to its conjugate-transpose {{Short description|Matrix equal to its conjugate-transpose
}} }}
{{For|matrices with symmetry over the ] field|symmetric matrix}} {{For|matrices with symmetry over the ] field|Symmetric matrix}}
{{Use American English|date=January 2019}} {{Use American English|date=January 2019}}


In ], a '''Hermitian matrix''' (or '''self-adjoint matrix''') is a ] ] that is equal to its own ]—that is, the element in the {{mvar|i}}-th row and {{mvar|j}}-th column is equal to the ] of the element in the {{mvar|j}}-th row and {{mvar|i}}-th column, for all indices {{mvar|i}} and {{mvar|j}}: In ], a '''Hermitian matrix''' (or '''self-adjoint matrix''') is a ] ] that is equal to its own ]—that is, the element in the {{mvar|i}}-th row and {{mvar|j}}-th column is equal to the ] of the element in the {{mvar|j}}-th row and {{mvar|i}}-th column, for all indices {{mvar|i}} and {{mvar|j}}:
<math display =block>A \text{ is Hermitian} \quad \iff \quad a_{ij} = \overline{a_{ji}}</math>

{{Equation box 1
|indent = 1em
|title=
|equation = <math>A \text{ Hermitian} \quad \iff \quad a_{ij} = \overline{{a}_{ji}}</math>
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=#F5FFFA}}


or in matrix form: or in matrix form:
<math display=block>A \text{ Hermitian} \quad \iff \quad A = \overline {A^\mathsf{T}}.</math> <math display=block>A \text{ is Hermitian} \quad \iff \quad A = \overline {A^\mathsf{T}}.</math>


Hermitian matrices can be understood as the complex extension of real ]. Hermitian matrices can be understood as the complex extension of real ].


If the ] of a matrix <math>A</math> is denoted by <math>A^\mathsf{H}</math>, then the Hermitian property can be written concisely as If the ] of a matrix <math>A</math> is denoted by <math>A^\mathsf{H},</math> then the Hermitian property can be written concisely as


<math display=block>A \text{ is Hermitian} \quad \iff \quad A = A^\mathsf{H}</math>
{{Equation box 1
|indent = 1em
|title=
|equation = <math>A \text{ Hermitian} \quad \iff \quad A = A^\mathsf{H}</math>
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=#F5FFFA}}


Hermitian matrices are named after ], who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real ]. Other, equivalent notations in common use are <math>A^\mathsf{H} = A^\dagger = A^\ast</math>, although note that in ], <math>A^\ast</math> typically means the ] only, and not the ]. Hermitian matrices are named after ],<ref>{{Citation |last=Archibald |first=Tom |title=VI.47 Charles Hermite |date=2010-12-31 |url=https://www.degruyter.com/document/doi/10.1515/9781400830398.773a/html |work=The Princeton Companion to Mathematics |pages=773 |editor-last=Gowers |editor-first=Timothy |access-date=2023-11-15 |publisher=Princeton University Press |doi=10.1515/9781400830398.773a |isbn=978-1-4008-3039-8 |editor2-last=Barrow-Green |editor2-first=June |editor3-last=Leader |editor3-first=Imre}}</ref> who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real ]. Other, equivalent notations in common use are <math>A^\mathsf{H} = A^\dagger = A^\ast,</math> although in ], <math>A^\ast</math> typically means the ] only, and not the ].

==Alternative characterizations==


== Alternative characterizations ==
Hermitian matrices can be characterized in a number of equivalent ways, some of which are listed below: Hermitian matrices can be characterized in a number of equivalent ways, some of which are listed below:


=== Equality with the adjoint === ===Equality with the adjoint===

A square matrix <math>A</math> is Hermitian if and only if it is equal to its ], that is, it satisfies
A square matrix <math>A</math> is Hermitian if and only if it is equal to its ], that is, it satisfies
<math display="block">\langle \mathbf w, A \mathbf v\rangle = \langle A \mathbf w, \mathbf v\rangle,</math> <math display="block">\langle \mathbf w, A \mathbf v\rangle = \langle A \mathbf w, \mathbf v\rangle,</math>
for any pair of vectors <math>\mathbf v, \mathbf w</math>, where <math>\langle \cdot, \cdot\rangle</math> denotes ] operation. for any pair of vectors <math>\mathbf v, \mathbf w,</math> where <math>\langle \cdot, \cdot\rangle</math> denotes ] operation.


This is also the way that the more general concept of ] is defined. This is also the way that the more general concept of ] is defined.


=== Reality of quadratic forms === ===Real-valuedness of quadratic forms===
A square matrix <math>A</math> is Hermitian if and only if
<math display="block">\langle \mathbf{v}, A \mathbf{v}\rangle\in\R, \quad \mathbf{v}\in \mathbb{R}.</math>


An <math>n\times{}n</math> matrix <math>A</math> is Hermitian if and only if
=== Spectral properties ===
<math display="block">\langle \mathbf{v}, A \mathbf{v}\rangle\in\R, \quad \text{for all } \mathbf{v}\in \mathbb{C}^{n}.</math>
A square matrix <math>A</math> is Hermitian if and only if it is unitarily ] with real ].'''


===Spectral properties===
== Applications ==

Hermitian matrices are fundamental to ] because they describe operators with necessarily real eigenvalues. An eigenvalue <math>a</math> of an operator <math>\hat{A}</math> on some quantum state <math>|\psi\rangle</math> is one of the possible measurement outcomes of the operator, which necessitates the need for operators with real eigenvalues.
A square matrix <math>A</math> is Hermitian if and only if it is unitarily ] with real ].

==Applications==

Hermitian matrices are fundamental to ] because they describe operators with necessarily real eigenvalues. An eigenvalue <math>a</math> of an operator <math>\hat{A}</math> on some quantum state <math>|\psi\rangle</math> is one of the possible measurement outcomes of the operator, which requires the operators to have real eigenvalues.

In ], Hermitian matrices are utilized in tasks like ] and signal representation.<ref>{{Cite web |last=Ribeiro |first=Alejandro |title=Signal and Information Processing |url=https://www.seas.upenn.edu/~ese2240/Lecture%20Notes/sip_PCA.pdf}}</ref> The eigenvalues and eigenvectors of Hermitian matrices play a crucial role in analyzing signals and extracting meaningful information.

Hermitian matrices are extensively studied in ] and ]. They have well-defined spectral properties, and many numerical algorithms, such as the ], exploit these properties for efficient computations. Hermitian matrices also appear in techniques like ] (SVD) and ].

In ] and ], Hermitian matrices are used in ], where they represent the relationships between different variables. The positive definiteness of a Hermitian covariance matrix ensures the well-definedness of multivariate distributions.<ref>{{Cite web |title=MULTIVARIATE NORMAL DISTRIBUTIONS |url=https://dspace.mit.edu/bitstream/handle/1721.1/121170/6-436j-fall-2008/contents/lecture-notes/MIT6_436JF08_lec15.pdf}}</ref>

Hermitian matrices are applied in the design and analysis of ], especially in the field of ] (MIMO) systems. Channel matrices in MIMO systems often exhibit Hermitian properties.

In ], Hermitian matrices are used to study the ]. The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs.<ref>{{Cite web |last=Lau |first=Ivan |title=Hermitian Spectral Theory of Mixed Graphs |url=https://www.sfu.ca/~iplau/Edinburgh_CS_Project.pdf}}</ref> The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs.<ref>{{Cite journal |last1=Liu |first1=Jianxi |last2=Li |first2=Xueliang |date=February 2015 |title=Hermitian-adjacency matrices and Hermitian energies of mixed graphs |journal=Linear Algebra and Its Applications |language=en |volume=466 |pages=182–207 |doi=10.1016/j.laa.2014.10.028|doi-access=free }}</ref>

==Examples and solutions==


== Examples and solutions ==
In this section, the conjugate transpose of matrix <math> A </math> is denoted as <math> A^\mathsf{H} ,</math> the transpose of matrix <math> A </math> is denoted as <math> A^\mathsf{T} </math> and conjugate of matrix <math> A </math> is denoted as <math> \overline{A} .</math> In this section, the conjugate transpose of matrix <math> A </math> is denoted as <math> A^\mathsf{H} ,</math> the transpose of matrix <math> A </math> is denoted as <math> A^\mathsf{T} </math> and conjugate of matrix <math> A </math> is denoted as <math> \overline{A} .</math>


Line 68: Line 69:
Well-known families of Hermitian matrices include the ], the ] and their generalizations. In ] such Hermitian matrices are often multiplied by ] coefficients,<ref> Well-known families of Hermitian matrices include the ], the ] and their generalizations. In ] such Hermitian matrices are often multiplied by ] coefficients,<ref>
{{cite book |title=The Geometry of Physics: an introduction |last=Frankel |first=Theodore |author-link=Theodore Frankel |year=2004 |publisher=] |isbn=0-521-53927-7 |page=652 |url=https://books.google.com/books?id=DUnjs6nEn8wC&q=%22Lie%20algebra%22%20physics%20%22skew-Hermitian%22&pg=PA652 }} {{cite book |title=The Geometry of Physics: an introduction |last=Frankel |first=Theodore |author-link=Theodore Frankel |year=2004 |publisher=] |isbn=0-521-53927-7 |page=652 |url=https://books.google.com/books?id=DUnjs6nEn8wC&q=%22Lie%20algebra%22%20physics%20%22skew-Hermitian%22&pg=PA652 }}
</ref><ref> at ]</ref> which results in ]. </ref><ref> {{Webarchive|url=https://web.archive.org/web/20220307172254/http://www.hep.caltech.edu/~fcp/physics/quantumMechanics/angularMomentum/angularMomentum.pdf |date=2022-03-07 }} at ]</ref> which results in ].


Here, we offer another useful Hermitian matrix using an abstract example. If a square matrix <math> A </math> equals the ] and its conjugate transpose, that is, <math> A = BB^\mathsf{H} ,</math> then <math> A </math> is a Hermitian ]. Furthermore, if <math> B </math> is row full-rank, then <math> A </math> is positive definite. Here, we offer another useful Hermitian matrix using an abstract example. If a square matrix <math> A </math> equals the ] with its conjugate transpose, that is, <math> A = BB^\mathsf{H} ,</math> then <math> A </math> is a Hermitian ]. Furthermore, if <math> B </math> is row full-rank, then <math> A </math> is positive definite.


== Properties == ==Properties==

{{Expand section|1=Proof of the properties requested|section=1|date=February 2018|small=no}}
===Main diagonal values are real===


=== Main diagonal values are real ===
The entries on the ] (top left to bottom right) of any Hermitian matrix are ]. The entries on the ] (top left to bottom right) of any Hermitian matrix are ].


Line 85: Line 86:
Only the ] entries are necessarily real; Hermitian matrices can have arbitrary complex-valued entries in their ]s, as long as diagonally-opposite entries are complex conjugates. Only the ] entries are necessarily real; Hermitian matrices can have arbitrary complex-valued entries in their ]s, as long as diagonally-opposite entries are complex conjugates.


=== Symmetric === ===Symmetric===

A matrix that has only real entries is ] ] it is Hermitian matrix. A real and symmetric matrix is simply a special case of a Hermitian matrix.
A matrix that has only real entries is ] ] it is a Hermitian matrix. A real and symmetric matrix is simply a special case of a Hermitian matrix.


{{math proof|1= <math>H_{ij} = \overline{H}_{ji}</math> by definition. Thus <math>H_{ij} = H_{ji}</math> (matrix symmetry) if and only if <math>H_{ij} = \overline{H}_{ij}</math> (<math>H_{ij}</math> is real). {{math proof|1= <math>H_{ij} = \overline{H}_{ji}</math> by definition. Thus <math>H_{ij} = H_{ji}</math> (matrix symmetry) if and only if <math>H_{ij} = \overline{H}_{ij}</math> (<math>H_{ij}</math> is real).
}} }}


So, if a real anti-symmetric matrix is multiplied by a multiple of imaginary unit <math>i,</math> then it becomes Hermitian. So, if a real anti-symmetric matrix is multiplied by a real multiple of the imaginary unit <math>i,</math> then it becomes Hermitian.

===Normal===


=== Normal ===
Every Hermitian matrix is a ]. That is to say, <math>AA^\mathsf{H} = A^\mathsf{H}A.</math> Every Hermitian matrix is a ]. That is to say, <math>AA^\mathsf{H} = A^\mathsf{H}A.</math>


{{math proof|1=<math>A = A^\mathsf{H}</math>, so <math>AA^\mathsf{H} = AA = A^\mathsf{H}A.</math>}} {{math proof|1=<math>A = A^\mathsf{H},</math> so <math>AA^\mathsf{H} = AA = A^\mathsf{H}A.</math>}}

===Diagonalizable===


=== Diagonalizable ===
The finite-dimensional ] says that any Hermitian matrix can be ] by a ], and that the resulting diagonal matrix has only real entries. This implies that all ]s of a Hermitian matrix {{mvar|A}} with dimension {{mvar|n}} are real, and that {{mvar|A}} has {{mvar|n}} linearly independent ]s. Moreover, a Hermitian matrix has ] eigenvectors for distinct eigenvalues. Even if there are degenerate eigenvalues, it is always possible to find an ] of {{math|'''C'''<sup>''n''</sup>}} consisting of {{mvar|n}} eigenvectors of {{mvar|A}}. The finite-dimensional ] says that any Hermitian matrix can be ] by a ], and that the resulting diagonal matrix has only real entries. This implies that all ]s of a Hermitian matrix {{mvar|A}} with dimension {{mvar|n}} are real, and that {{mvar|A}} has {{mvar|n}} linearly independent ]s. Moreover, a Hermitian matrix has ] eigenvectors for distinct eigenvalues. Even if there are degenerate eigenvalues, it is always possible to find an ] of {{math|'''C'''<sup>''n''</sup>}} consisting of {{mvar|n}} eigenvectors of {{mvar|A}}.


=== Sum of Hermitian matrices === ===Sum of Hermitian matrices===

The sum of any two Hermitian matrices is Hermitian. The sum of any two Hermitian matrices is Hermitian.


{{math proof|1= <math display="block">(A + B)_{ij} = A_{ij} + B_{ij} = \overline{A}_{ji} + \overline{B}_{ji} = \overline{(A + B)}_{ji},</math> as claimed.}} {{math proof|1= <math display="block">(A + B)_{ij} = A_{ij} + B_{ij} = \overline{A}_{ji} + \overline{B}_{ji} = \overline{(A + B)}_{ji},</math> as claimed.}}


=== Inverse is Hermitian === ===Inverse is Hermitian===

The ] of an invertible Hermitian matrix is Hermitian as well. The ] of an invertible Hermitian matrix is Hermitian as well.


{{math proof|1= If <math>A^{-1}A=I</math>, then <math>I= I^\mathsf{H} = \left(A^{-1}A\right)^\mathsf{H} = A^\mathsf{H}\left(A^{-1}\right)^\mathsf{H} = A \left(A^{-1}\right)^\mathsf{H}</math>, so <math>A^{-1}=\left(A^{-1}\right)^\mathsf{H}</math> as claimed.}} {{math proof|1= If <math>A^{-1}A = I,</math> then <math>I= I^\mathsf{H} = \left(A^{-1}A\right)^\mathsf{H} = A^\mathsf{H}\left(A^{-1}\right)^\mathsf{H} = A \left(A^{-1}\right)^\mathsf{H},</math> so <math>A^{-1}=\left(A^{-1}\right)^\mathsf{H}</math> as claimed.}}

===Associative product of Hermitian matrices===


=== Associative product of Hermitian matrices ===
The ] of two Hermitian matrices {{mvar|A}} and {{mvar|B}} is Hermitian if and only if {{math|1=''AB'' = ''BA''}}. The ] of two Hermitian matrices {{mvar|A}} and {{mvar|B}} is Hermitian if and only if {{math|1=''AB'' = ''BA''}}.


{{math proof|1= Note that <math display="block">(AB)^\mathsf{H} = \overline{(AB)^\mathsf{T}} = \overline{B^\mathsf{T} A^\mathsf{T}} = \overline{B^\mathsf{T}} \ \overline{A^\mathsf{T}} = B^\mathsf{H} A^\mathsf{H} = BA.</math> Thus <math>(AB)^\mathsf{H} = AB</math> ] <math>AB = BA.</math> {{math proof|1= <math display="block">(AB)^\mathsf{H} = \overline{(AB)^\mathsf{T}} = \overline{B^\mathsf{T} A^\mathsf{T}} = \overline{B^\mathsf{T}} \ \overline{A^\mathsf{T}} = B^\mathsf{H} A^\mathsf{H} = BA.</math> Thus <math>(AB)^\mathsf{H} = AB</math> ] <math>AB = BA.</math>


Thus {{math|''A''<sup>''n''</sup>}} is Hermitian if {{mvar|A}} is Hermitian and {{mvar|n}} is an integer. Thus {{math|''A''<sup>''n''</sup>}} is Hermitian if {{mvar|A}} is Hermitian and {{mvar|n}} is an integer.
}} }}


=== ''ABA'' Hermitian === ===''ABA'' Hermitian===

If ''A'' and ''B'' are Hermitian, then ''ABA'' is also Hermitian. If ''A'' and ''B'' are Hermitian, then ''ABA'' is also Hermitian.
{{math proof|1= <math display="block">(ABA)^\mathsf{H} = (A(BA))^\mathsf{H} = (BA)^\mathsf{H}A^\mathsf{H} = A^\mathsf{H}B^\mathsf{H}A^\mathsf{H} = ABA </math>}} {{math proof|1= <math display="block">(ABA)^\mathsf{H} = (A(BA))^\mathsf{H} = (BA)^\mathsf{H}A^\mathsf{H} = A^\mathsf{H}B^\mathsf{H}A^\mathsf{H} = ABA </math>}}


=== {{math|v<sup>H</sup>''A''v}} is real for complex {{math|v}} === ==={{math|v<sup>H</sup>''A''v}} is real for complex {{math|v}}===
For an arbitrary complex valued vector {{Math|'''v'''}} the product <math> \mathbf{v}^\mathsf{H} A \mathbf{v} </math> is real because of <math> \mathbf{v}^\mathsf{H} A \mathbf{v} = \left(\mathbf{v}^\mathsf{H} A \mathbf{v}\right)^\mathsf{H} .</math> This is especially important in quantum physics where Hermitian matrices are operators that measure properties of a system e.g. total ] which have to be real.


For an arbitrary complex valued vector {{Math|'''v'''}} the product <math> \mathbf{v}^\mathsf{H} A \mathbf{v} </math> is real because of <math> \mathbf{v}^\mathsf{H} A \mathbf{v} = \left(\mathbf{v}^\mathsf{H} A \mathbf{v}\right)^\mathsf{H} .</math> This is especially important in quantum physics where Hermitian matrices are operators that measure properties of a system, e.g. total ], which have to be real.
=== Complex Hermitian forms vector space over {{math|R}} ===

The Hermitian complex {{mvar|n}}-by-{{mvar|n}} matrices do not form a ] over the ]s, {{math|'''C'''}}, since the identity matrix {{math|''I''<sub>''n''</sub>}} is Hermitian, but {{math|''i'' ''I''<sub>''n''</sub>}} is not. However the complex Hermitian matrices ''do'' form a vector space over the ] {{math|'''R'''}}. In the {{math|2''n''<sup>2</sup>}}-] vector space of complex {{math|''n'' × ''n''}} matrices over {{math|'''R'''}}, the complex Hermitian matrices form a subspace of dimension {{math|''n''<sup>2</sup>}}. If {{math|''E''<sub>''jk''</sub>}} denotes the {{mvar|n}}-by-{{mvar|n}} matrix with a {{math|1}} in the {{math|''j'',''k''}} position and zeros elsewhere, a basis (orthonormal with respect to the Frobenius inner product) can be described as follows:
===Complex Hermitian forms vector space over {{math|ℝ}}===

The Hermitian complex {{mvar|n}}-by-{{mvar|n}} matrices do not form a ] over the ]s, {{math|'''ℂ'''}}, since the identity matrix {{math|''I''<sub>''n''</sub>}} is Hermitian, but {{math|''i'' ''I''<sub>''n''</sub>}} is not. However the complex Hermitian matrices ''do'' form a vector space over the ] {{math|'''ℝ'''}}. In the {{math|2''n''<sup>2</sup>}}-] vector space of complex {{math|''n'' × ''n''}} matrices over {{math|'''ℝ'''}}, the complex Hermitian matrices form a subspace of dimension {{math|''n''<sup>2</sup>}}. If {{math|''E''<sub>''jk''</sub>}} denotes the {{mvar|n}}-by-{{mvar|n}} matrix with a {{math|1}} in the {{math|''j'',''k''}} position and zeros elsewhere, a basis (orthonormal with respect to the Frobenius inner product) can be described as follows:
<math display=block>E_{jj} \text{ for } 1 \leq j \leq n \quad (n \text{ matrices}) </math> <math display=block>E_{jj} \text{ for } 1 \leq j \leq n \quad (n \text{ matrices}) </math>


Line 138: Line 148:
where <math>i</math> denotes the ], <math>i = \sqrt{-1}~.</math> where <math>i</math> denotes the ], <math>i = \sqrt{-1}~.</math>


An example is that the four ] form a complete basis for the vector space of all complex 2-by-2 Hermitian matrices over {{math|'''R'''}}. An example is that the four ] form a complete basis for the vector space of all complex 2-by-2 Hermitian matrices over {{math|''''''}}.

===Eigendecomposition===


=== Eigendecomposition ===
If {{mvar|n}} orthonormal eigenvectors <math>\mathbf{u}_1, \dots, \mathbf{u}_n</math> of a Hermitian matrix are chosen and written as the columns of the matrix {{mvar|U}}, then one ] of {{mvar|A}} is <math> A = U \Lambda U^\mathsf{H}</math> where <math>U U^\mathsf{H} = I = U^\mathsf{H} U</math> and therefore If {{mvar|n}} orthonormal eigenvectors <math>\mathbf{u}_1, \dots, \mathbf{u}_n</math> of a Hermitian matrix are chosen and written as the columns of the matrix {{mvar|U}}, then one ] of {{mvar|A}} is <math> A = U \Lambda U^\mathsf{H}</math> where <math>U U^\mathsf{H} = I = U^\mathsf{H} U</math> and therefore
<math display=block>A = \sum_j \lambda_j \mathbf{u}_j \mathbf{u}_j ^\mathsf{H},</math> <math display=block>A = \sum_j \lambda_j \mathbf{u}_j \mathbf{u}_j ^\mathsf{H},</math>
where <math>\lambda_j</math> are the eigenvalues on the diagonal of the diagonal matrix <math>\Lambda.</math> where <math>\lambda_j</math> are the eigenvalues on the diagonal of the diagonal matrix <math>\Lambda.</math>


=== Real determinant === === Singular values ===
The singular values of <math>A</math> are the absolute values of its eigenvalues:

Since <math>A</math> has an eigendecomposition <math>A=U\Lambda U^H</math>, where <math>U</math> is a ] (its columns are orthonormal vectors; ]), a ] of <math>A</math> is <math>A=U|\Lambda|\text{sgn}(\Lambda)U^H</math>, where <math>|\Lambda|</math> and <math>\text{sgn}(\Lambda)</math> are diagonal matrices containing the absolute values <math>|\lambda|</math> and signs <math>\text{sgn}(\lambda)</math> of <math>A</math>'s eigenvalues, respectively. <math>\sgn(\Lambda)U^H</math> is unitary, since the columns of <math>U^H</math> are only getting multiplied by <math>\pm 1</math>. <math>|\Lambda|</math> contains the singular values of <math>A</math>, namely, the absolute values of its eigenvalues.<ref>{{Cite book |last1=Trefethan |first1=Lloyd N. |url=http://worldcat.org/oclc/1348374386 |title=Numerical linear algebra |last2=Bau, III |first2=David |publisher=] |year=1997 |isbn=0-89871-361-7 |location=Philadelphia, PA, USA |pages=34 |oclc=1348374386}}</ref>

===Real determinant===

The determinant of a Hermitian matrix is real: The determinant of a Hermitian matrix is real:


{{math proof|1= <math> \det(A) = \det\left(A^\mathsf{T}\right)\quad \Rightarrow \quad \det\left(A^\mathsf{H}\right) = \overline{\det(A)} </math> {{math proof|1= <math> \det(A) = \det\left(A^\mathsf{T}\right)\quad \Rightarrow \quad \det\left(A^\mathsf{H}\right) = \overline{\det(A)} </math>
Therefore if <math>A = A^\mathsf{H}\quad \Rightarrow \quad \det(A) = \overline{\det(A)} </math>. Therefore if <math>A = A^\mathsf{H}\quad \Rightarrow \quad \det(A) = \overline{\det(A)} .</math>
}} }}
(Alternatively, the determinant is the product of the matrix's eigenvalues, and as mentioned before, the eigenvalues of a Hermitian matrix are real.) (Alternatively, the determinant is the product of the matrix's eigenvalues, and as mentioned before, the eigenvalues of a Hermitian matrix are real.)


== Decomposition into Hermitian and skew-Hermitian matrices == ==Decomposition into Hermitian and skew-Hermitian matrices==

{{anchor|facts}}Additional facts related to Hermitian matrices include: {{anchor|facts}}Additional facts related to Hermitian matrices include:
* The sum of a square matrix and its conjugate transpose <math>\left(A + A^\mathsf{H}\right)</math> is Hermitian. * The sum of a square matrix and its conjugate transpose <math>\left(A + A^\mathsf{H}\right)</math> is Hermitian.
Line 161: Line 179:
==Rayleigh quotient== ==Rayleigh quotient==
{{Main|Rayleigh quotient}} {{Main|Rayleigh quotient}}

In mathematics, for a given complex Hermitian matrix {{mvar|M}} and nonzero vector {{math|'''x'''}}, the Rayleigh quotient<ref>Also known as the '''Rayleigh–Ritz ratio'''; named after ] and ].</ref> <math>R(M, \mathbf{x})</math>, is defined as:<ref name="HornJohnson"/>{{rp|p. 234}}<ref>Parlet B. N. ''The symmetric eigenvalue problem'', SIAM, Classics in Applied Mathematics,1998</ref>
In mathematics, for a given complex Hermitian matrix {{mvar|M}} and nonzero vector {{math|'''x'''}}, the Rayleigh quotient<ref>Also known as the '''Rayleigh–Ritz ratio'''; named after ] and ].</ref> <math>R(M, \mathbf{x}),</math> is defined as:<ref name="HornJohnson"/>{{rp|p. 234}}<ref>Parlet B. N. ''The symmetric eigenvalue problem'', SIAM, Classics in Applied Mathematics,1998</ref>
<math display=block>R(M, \mathbf{x}) := \frac{\mathbf{x}^\mathsf{H} M \mathbf{x}}{\mathbf{x}^\mathsf{H} \mathbf{x}}.</math> <math display=block>R(M, \mathbf{x}) := \frac{\mathbf{x}^\mathsf{H} M \mathbf{x}}{\mathbf{x}^\mathsf{H} \mathbf{x}}.</math>


For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose <math>\mathbf{x}^\mathsf{H}</math> to the usual transpose <math>\mathbf{x}^\mathsf{T}</math>. Note that <math>R(M, c \mathbf x) = R(M, \mathbf x)</math> for any non-zero real scalar <math>c</math>. Also, recall that a Hermitian (or real symmetric) matrix has real eigenvalues. For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose <math>\mathbf{x}^\mathsf{H}</math> to the usual transpose <math>\mathbf{x}^\mathsf{T}.</math> <math>R(M, c \mathbf x) = R(M, \mathbf x)</math> for any non-zero real scalar <math>c.</math> Also, recall that a Hermitian (or real symmetric) matrix has real eigenvalues.


It can be shown{{citation needed|date=September 2019}} that, for a given matrix, the Rayleigh quotient reaches its minimum value <math>\lambda_\min</math> (the smallest eigenvalue of M) when <math>\mathbf x</math> is <math>\mathbf v_\min</math> (the corresponding eigenvector). Similarly, <math>R(M, \mathbf x) \leq \lambda_\max</math> and <math>R(M, \mathbf v_\max) = \lambda_\max .</math> It can be shown<ref name="HornJohnson" /> that, for a given matrix, the Rayleigh quotient reaches its minimum value <math>\lambda_\min</math> (the smallest eigenvalue of M) when <math>\mathbf x</math> is <math>\mathbf v_\min</math> (the corresponding eigenvector). Similarly, <math>R(M, \mathbf x) \leq \lambda_\max</math> and <math>R(M, \mathbf v_\max) = \lambda_\max .</math>


The Rayleigh quotient is used in the min-max theorem to get exact values of all eigenvalues. It is also used in eigenvalue algorithms to obtain an eigenvalue approximation from an eigenvector approximation. Specifically, this is the basis for Rayleigh quotient iteration. The Rayleigh quotient is used in the min-max theorem to get exact values of all eigenvalues. It is also used in eigenvalue algorithms to obtain an eigenvalue approximation from an eigenvector approximation. Specifically, this is the basis for Rayleigh quotient iteration.
Line 173: Line 192:


==See also== ==See also==

*]
* {{annotated link|Complex symmetric matrix}}
*]
* {{annotated link|Haynsworth inertia additivity formula}}
*] (anti-Hermitian matrix)
* {{annotated link|Hermitian form}}
*]
* {{annotated link|Normal matrix}}
*]
* {{annotated link|Schur–Horn theorem}}
*]
* {{annotated link|Self-adjoint operator}}
*]
* {{annotated link|Skew-Hermitian matrix}} (anti-Hermitian matrix)
*]
* {{annotated link|Unitary matrix}}
* {{annotated link|Vector space}}


==References== ==References==

{{Reflist}}
{{reflist}}


==External links== ==External links==
*{{springer|title=Hermitian matrix|id=p/h047070}} * {{springer|title=Hermitian matrix|id=p/h047070}}
*, by Chao-Kuei Hung from Chaoyang University, gives a more geometric explanation. * {{Webarchive|url=https://web.archive.org/web/20170829203442/https://www.cyut.edu.tw/~ckhung/b/la/hermitian.en.php |date=2017-08-29 }}, by Chao-Kuei Hung from Chaoyang University, gives a more geometric explanation.
*{{MathPages|id=home/kmath306/kmath306|title=Hermitian Matrices}} *{{MathPages|id=home/kmath306/kmath306|title=Hermitian Matrices}}



Latest revision as of 00:55, 10 November 2024

Matrix equal to its conjugate-transpose For matrices with symmetry over the real number field, see Symmetric matrix.

In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j: A  is Hermitian a i j = a j i ¯ {\displaystyle A{\text{ is Hermitian}}\quad \iff \quad a_{ij}={\overline {a_{ji}}}}

or in matrix form: A  is Hermitian A = A T ¯ . {\displaystyle A{\text{ is Hermitian}}\quad \iff \quad A={\overline {A^{\mathsf {T}}}}.}

Hermitian matrices can be understood as the complex extension of real symmetric matrices.

If the conjugate transpose of a matrix A {\displaystyle A} is denoted by A H , {\displaystyle A^{\mathsf {H}},} then the Hermitian property can be written concisely as

A  is Hermitian A = A H {\displaystyle A{\text{ is Hermitian}}\quad \iff \quad A=A^{\mathsf {H}}}

Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A H = A = A , {\displaystyle A^{\mathsf {H}}=A^{\dagger }=A^{\ast },} although in quantum mechanics, A {\displaystyle A^{\ast }} typically means the complex conjugate only, and not the conjugate transpose.

Alternative characterizations

Hermitian matrices can be characterized in a number of equivalent ways, some of which are listed below:

Equality with the adjoint

A square matrix A {\displaystyle A} is Hermitian if and only if it is equal to its conjugate transpose, that is, it satisfies w , A v = A w , v , {\displaystyle \langle \mathbf {w} ,A\mathbf {v} \rangle =\langle A\mathbf {w} ,\mathbf {v} \rangle ,} for any pair of vectors v , w , {\displaystyle \mathbf {v} ,\mathbf {w} ,} where , {\displaystyle \langle \cdot ,\cdot \rangle } denotes the inner product operation.

This is also the way that the more general concept of self-adjoint operator is defined.

Real-valuedness of quadratic forms

An n × n {\displaystyle n\times {}n} matrix A {\displaystyle A} is Hermitian if and only if v , A v R , for all  v C n . {\displaystyle \langle \mathbf {v} ,A\mathbf {v} \rangle \in \mathbb {R} ,\quad {\text{for all }}\mathbf {v} \in \mathbb {C} ^{n}.}

Spectral properties

A square matrix A {\displaystyle A} is Hermitian if and only if it is unitarily diagonalizable with real eigenvalues.

Applications

Hermitian matrices are fundamental to quantum mechanics because they describe operators with necessarily real eigenvalues. An eigenvalue a {\displaystyle a} of an operator A ^ {\displaystyle {\hat {A}}} on some quantum state | ψ {\displaystyle |\psi \rangle } is one of the possible measurement outcomes of the operator, which requires the operators to have real eigenvalues.

In signal processing, Hermitian matrices are utilized in tasks like Fourier analysis and signal representation. The eigenvalues and eigenvectors of Hermitian matrices play a crucial role in analyzing signals and extracting meaningful information.

Hermitian matrices are extensively studied in linear algebra and numerical analysis. They have well-defined spectral properties, and many numerical algorithms, such as the Lanczos algorithm, exploit these properties for efficient computations. Hermitian matrices also appear in techniques like singular value decomposition (SVD) and eigenvalue decomposition.

In statistics and machine learning, Hermitian matrices are used in covariance matrices, where they represent the relationships between different variables. The positive definiteness of a Hermitian covariance matrix ensures the well-definedness of multivariate distributions.

Hermitian matrices are applied in the design and analysis of communications system, especially in the field of multiple-input multiple-output (MIMO) systems. Channel matrices in MIMO systems often exhibit Hermitian properties.

In graph theory, Hermitian matrices are used to study the spectra of graphs. The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs.

Examples and solutions

In this section, the conjugate transpose of matrix A {\displaystyle A} is denoted as A H , {\displaystyle A^{\mathsf {H}},} the transpose of matrix A {\displaystyle A} is denoted as A T {\displaystyle A^{\mathsf {T}}} and conjugate of matrix A {\displaystyle A} is denoted as A ¯ . {\displaystyle {\overline {A}}.}

See the following example:

[ 0 a i b c i d a + i b 1 m i n c + i d m + i n 2 ] {\displaystyle {\begin{bmatrix}0&a-ib&c-id\\a+ib&1&m-in\\c+id&m+in&2\end{bmatrix}}}

The diagonal elements must be real, as they must be their own complex conjugate.

Well-known families of Hermitian matrices include the Pauli matrices, the Gell-Mann matrices and their generalizations. In theoretical physics such Hermitian matrices are often multiplied by imaginary coefficients, which results in skew-Hermitian matrices.

Here, we offer another useful Hermitian matrix using an abstract example. If a square matrix A {\displaystyle A} equals the product of a matrix with its conjugate transpose, that is, A = B B H , {\displaystyle A=BB^{\mathsf {H}},} then A {\displaystyle A} is a Hermitian positive semi-definite matrix. Furthermore, if B {\displaystyle B} is row full-rank, then A {\displaystyle A} is positive definite.

Properties

Main diagonal values are real

The entries on the main diagonal (top left to bottom right) of any Hermitian matrix are real.

Proof

By definition of the Hermitian matrix H i j = H ¯ j i {\displaystyle H_{ij}={\overline {H}}_{ji}} so for i = j the above follows.

Only the main diagonal entries are necessarily real; Hermitian matrices can have arbitrary complex-valued entries in their off-diagonal elements, as long as diagonally-opposite entries are complex conjugates.

Symmetric

A matrix that has only real entries is symmetric if and only if it is a Hermitian matrix. A real and symmetric matrix is simply a special case of a Hermitian matrix.

Proof

H i j = H ¯ j i {\displaystyle H_{ij}={\overline {H}}_{ji}} by definition. Thus H i j = H j i {\displaystyle H_{ij}=H_{ji}} (matrix symmetry) if and only if H i j = H ¯ i j {\displaystyle H_{ij}={\overline {H}}_{ij}} ( H i j {\displaystyle H_{ij}} is real).

So, if a real anti-symmetric matrix is multiplied by a real multiple of the imaginary unit i , {\displaystyle i,} then it becomes Hermitian.

Normal

Every Hermitian matrix is a normal matrix. That is to say, A A H = A H A . {\displaystyle AA^{\mathsf {H}}=A^{\mathsf {H}}A.}

Proof

A = A H , {\displaystyle A=A^{\mathsf {H}},} so A A H = A A = A H A . {\displaystyle AA^{\mathsf {H}}=AA=A^{\mathsf {H}}A.}

Diagonalizable

The finite-dimensional spectral theorem says that any Hermitian matrix can be diagonalized by a unitary matrix, and that the resulting diagonal matrix has only real entries. This implies that all eigenvalues of a Hermitian matrix A with dimension n are real, and that A has n linearly independent eigenvectors. Moreover, a Hermitian matrix has orthogonal eigenvectors for distinct eigenvalues. Even if there are degenerate eigenvalues, it is always possible to find an orthogonal basis of C consisting of n eigenvectors of A.

Sum of Hermitian matrices

The sum of any two Hermitian matrices is Hermitian.

Proof

( A + B ) i j = A i j + B i j = A ¯ j i + B ¯ j i = ( A + B ) ¯ j i , {\displaystyle (A+B)_{ij}=A_{ij}+B_{ij}={\overline {A}}_{ji}+{\overline {B}}_{ji}={\overline {(A+B)}}_{ji},} as claimed.

Inverse is Hermitian

The inverse of an invertible Hermitian matrix is Hermitian as well.

Proof

If A 1 A = I , {\displaystyle A^{-1}A=I,} then I = I H = ( A 1 A ) H = A H ( A 1 ) H = A ( A 1 ) H , {\displaystyle I=I^{\mathsf {H}}=\left(A^{-1}A\right)^{\mathsf {H}}=A^{\mathsf {H}}\left(A^{-1}\right)^{\mathsf {H}}=A\left(A^{-1}\right)^{\mathsf {H}},} so A 1 = ( A 1 ) H {\displaystyle A^{-1}=\left(A^{-1}\right)^{\mathsf {H}}} as claimed.

Associative product of Hermitian matrices

The product of two Hermitian matrices A and B is Hermitian if and only if AB = BA.

Proof

( A B ) H = ( A B ) T ¯ = B T A T ¯ = B T ¯   A T ¯ = B H A H = B A . {\displaystyle (AB)^{\mathsf {H}}={\overline {(AB)^{\mathsf {T}}}}={\overline {B^{\mathsf {T}}A^{\mathsf {T}}}}={\overline {B^{\mathsf {T}}}}\ {\overline {A^{\mathsf {T}}}}=B^{\mathsf {H}}A^{\mathsf {H}}=BA.} Thus ( A B ) H = A B {\displaystyle (AB)^{\mathsf {H}}=AB} if and only if A B = B A . {\displaystyle AB=BA.}

Thus A is Hermitian if A is Hermitian and n is an integer.

ABA Hermitian

If A and B are Hermitian, then ABA is also Hermitian.

Proof

( A B A ) H = ( A ( B A ) ) H = ( B A ) H A H = A H B H A H = A B A {\displaystyle (ABA)^{\mathsf {H}}=(A(BA))^{\mathsf {H}}=(BA)^{\mathsf {H}}A^{\mathsf {H}}=A^{\mathsf {H}}B^{\mathsf {H}}A^{\mathsf {H}}=ABA}

vAv is real for complex v

For an arbitrary complex valued vector v the product v H A v {\displaystyle \mathbf {v} ^{\mathsf {H}}A\mathbf {v} } is real because of v H A v = ( v H A v ) H . {\displaystyle \mathbf {v} ^{\mathsf {H}}A\mathbf {v} =\left(\mathbf {v} ^{\mathsf {H}}A\mathbf {v} \right)^{\mathsf {H}}.} This is especially important in quantum physics where Hermitian matrices are operators that measure properties of a system, e.g. total spin, which have to be real.

Complex Hermitian forms vector space over ℝ

The Hermitian complex n-by-n matrices do not form a vector space over the complex numbers, , since the identity matrix In is Hermitian, but iIn is not. However the complex Hermitian matrices do form a vector space over the real numbers . In the 2n-dimensional vector space of complex n × n matrices over , the complex Hermitian matrices form a subspace of dimension n. If Ejk denotes the n-by-n matrix with a 1 in the j,k position and zeros elsewhere, a basis (orthonormal with respect to the Frobenius inner product) can be described as follows: E j j  for  1 j n ( n  matrices ) {\displaystyle E_{jj}{\text{ for }}1\leq j\leq n\quad (n{\text{ matrices}})}

together with the set of matrices of the form 1 2 ( E j k + E k j )  for  1 j < k n ( n 2 n 2  matrices ) {\displaystyle {\frac {1}{\sqrt {2}}}\left(E_{jk}+E_{kj}\right){\text{ for }}1\leq j<k\leq n\quad \left({\frac {n^{2}-n}{2}}{\text{ matrices}}\right)}

and the matrices i 2 ( E j k E k j )  for  1 j < k n ( n 2 n 2  matrices ) {\displaystyle {\frac {i}{\sqrt {2}}}\left(E_{jk}-E_{kj}\right){\text{ for }}1\leq j<k\leq n\quad \left({\frac {n^{2}-n}{2}}{\text{ matrices}}\right)}

where i {\displaystyle i} denotes the imaginary unit, i = 1   . {\displaystyle i={\sqrt {-1}}~.}

An example is that the four Pauli matrices form a complete basis for the vector space of all complex 2-by-2 Hermitian matrices over .

Eigendecomposition

If n orthonormal eigenvectors u 1 , , u n {\displaystyle \mathbf {u} _{1},\dots ,\mathbf {u} _{n}} of a Hermitian matrix are chosen and written as the columns of the matrix U, then one eigendecomposition of A is A = U Λ U H {\displaystyle A=U\Lambda U^{\mathsf {H}}} where U U H = I = U H U {\displaystyle UU^{\mathsf {H}}=I=U^{\mathsf {H}}U} and therefore A = j λ j u j u j H , {\displaystyle A=\sum _{j}\lambda _{j}\mathbf {u} _{j}\mathbf {u} _{j}^{\mathsf {H}},} where λ j {\displaystyle \lambda _{j}} are the eigenvalues on the diagonal of the diagonal matrix Λ . {\displaystyle \Lambda .}

Singular values

The singular values of A {\displaystyle A} are the absolute values of its eigenvalues:

Since A {\displaystyle A} has an eigendecomposition A = U Λ U H {\displaystyle A=U\Lambda U^{H}} , where U {\displaystyle U} is a unitary matrix (its columns are orthonormal vectors; see above), a singular value decomposition of A {\displaystyle A} is A = U | Λ | sgn ( Λ ) U H {\displaystyle A=U|\Lambda |{\text{sgn}}(\Lambda )U^{H}} , where | Λ | {\displaystyle |\Lambda |} and sgn ( Λ ) {\displaystyle {\text{sgn}}(\Lambda )} are diagonal matrices containing the absolute values | λ | {\displaystyle |\lambda |} and signs sgn ( λ ) {\displaystyle {\text{sgn}}(\lambda )} of A {\displaystyle A} 's eigenvalues, respectively. sgn ( Λ ) U H {\displaystyle \operatorname {sgn}(\Lambda )U^{H}} is unitary, since the columns of U H {\displaystyle U^{H}} are only getting multiplied by ± 1 {\displaystyle \pm 1} . | Λ | {\displaystyle |\Lambda |} contains the singular values of A {\displaystyle A} , namely, the absolute values of its eigenvalues.

Real determinant

The determinant of a Hermitian matrix is real:

Proof

det ( A ) = det ( A T ) det ( A H ) = det ( A ) ¯ {\displaystyle \det(A)=\det \left(A^{\mathsf {T}}\right)\quad \Rightarrow \quad \det \left(A^{\mathsf {H}}\right)={\overline {\det(A)}}} Therefore if A = A H det ( A ) = det ( A ) ¯ . {\displaystyle A=A^{\mathsf {H}}\quad \Rightarrow \quad \det(A)={\overline {\det(A)}}.}

(Alternatively, the determinant is the product of the matrix's eigenvalues, and as mentioned before, the eigenvalues of a Hermitian matrix are real.)

Decomposition into Hermitian and skew-Hermitian matrices

Additional facts related to Hermitian matrices include:

  • The sum of a square matrix and its conjugate transpose ( A + A H ) {\displaystyle \left(A+A^{\mathsf {H}}\right)} is Hermitian.
  • The difference of a square matrix and its conjugate transpose ( A A H ) {\displaystyle \left(A-A^{\mathsf {H}}\right)} is skew-Hermitian (also called antihermitian). This implies that the commutator of two Hermitian matrices is skew-Hermitian.
  • An arbitrary square matrix C can be written as the sum of a Hermitian matrix A and a skew-Hermitian matrix B. This is known as the Toeplitz decomposition of C. C = A + B with A = 1 2 ( C + C H ) and B = 1 2 ( C C H ) {\displaystyle C=A+B\quad {\text{with}}\quad A={\frac {1}{2}}\left(C+C^{\mathsf {H}}\right)\quad {\text{and}}\quad B={\frac {1}{2}}\left(C-C^{\mathsf {H}}\right)}

Rayleigh quotient

Main article: Rayleigh quotient

In mathematics, for a given complex Hermitian matrix M and nonzero vector x, the Rayleigh quotient R ( M , x ) , {\displaystyle R(M,\mathbf {x} ),} is defined as: R ( M , x ) := x H M x x H x . {\displaystyle R(M,\mathbf {x} ):={\frac {\mathbf {x} ^{\mathsf {H}}M\mathbf {x} }{\mathbf {x} ^{\mathsf {H}}\mathbf {x} }}.}

For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose x H {\displaystyle \mathbf {x} ^{\mathsf {H}}} to the usual transpose x T . {\displaystyle \mathbf {x} ^{\mathsf {T}}.} R ( M , c x ) = R ( M , x ) {\displaystyle R(M,c\mathbf {x} )=R(M,\mathbf {x} )} for any non-zero real scalar c . {\displaystyle c.} Also, recall that a Hermitian (or real symmetric) matrix has real eigenvalues.

It can be shown that, for a given matrix, the Rayleigh quotient reaches its minimum value λ min {\displaystyle \lambda _{\min }} (the smallest eigenvalue of M) when x {\displaystyle \mathbf {x} } is v min {\displaystyle \mathbf {v} _{\min }} (the corresponding eigenvector). Similarly, R ( M , x ) λ max {\displaystyle R(M,\mathbf {x} )\leq \lambda _{\max }} and R ( M , v max ) = λ max . {\displaystyle R(M,\mathbf {v} _{\max })=\lambda _{\max }.}

The Rayleigh quotient is used in the min-max theorem to get exact values of all eigenvalues. It is also used in eigenvalue algorithms to obtain an eigenvalue approximation from an eigenvector approximation. Specifically, this is the basis for Rayleigh quotient iteration.

The range of the Rayleigh quotient (for matrix that is not necessarily Hermitian) is called a numerical range (or spectrum in functional analysis). When the matrix is Hermitian, the numerical range is equal to the spectral norm. Still in functional analysis, λ max {\displaystyle \lambda _{\max }} is known as the spectral radius. In the context of C*-algebras or algebraic quantum mechanics, the function that to M associates the Rayleigh quotient R(M, x) for a fixed x and M varying through the algebra would be referred to as "vector state" of the algebra.

See also

References

  1. Archibald, Tom (2010-12-31), Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.), "VI.47 Charles Hermite", The Princeton Companion to Mathematics, Princeton University Press, p. 773, doi:10.1515/9781400830398.773a, ISBN 978-1-4008-3039-8, retrieved 2023-11-15
  2. Ribeiro, Alejandro. "Signal and Information Processing" (PDF).
  3. "MULTIVARIATE NORMAL DISTRIBUTIONS" (PDF).
  4. Lau, Ivan. "Hermitian Spectral Theory of Mixed Graphs" (PDF).
  5. Liu, Jianxi; Li, Xueliang (February 2015). "Hermitian-adjacency matrices and Hermitian energies of mixed graphs". Linear Algebra and Its Applications. 466: 182–207. doi:10.1016/j.laa.2014.10.028.
  6. Frankel, Theodore (2004). The Geometry of Physics: an introduction. Cambridge University Press. p. 652. ISBN 0-521-53927-7.
  7. Physics 125 Course Notes Archived 2022-03-07 at the Wayback Machine at California Institute of Technology
  8. Trefethan, Lloyd N.; Bau, III, David (1997). Numerical linear algebra. Philadelphia, PA, USA: SIAM. p. 34. ISBN 0-89871-361-7. OCLC 1348374386.
  9. ^ Horn, Roger A.; Johnson, Charles R. (2013). Matrix Analysis, second edition. Cambridge University Press. ISBN 9780521839402.
  10. Also known as the Rayleigh–Ritz ratio; named after Walther Ritz and Lord Rayleigh.
  11. Parlet B. N. The symmetric eigenvalue problem, SIAM, Classics in Applied Mathematics,1998

External links

Matrix classes
Explicitly constrained entries
Constant
Conditions on eigenvalues or eigenvectors
Satisfying conditions on products or inverses
With specific applications
Used in statistics
Used in graph theory
Used in science and engineering
Related terms
Category:
Hermitian matrix: Difference between revisions Add topic